Step 11b – Lookouts and Fascia

Two other items that need to be installed before adding the sheathing are the lookouts, fascia, and subfascia.  These elements will work together to add some flair to the edge of the roof line.  The lookouts run along the gable ends of the house, and will not only give a nice look to the trim, but will also support the outer edge of the roof, which will run a couple feet beyond the walls of the house.  These overhangs help to keep rain away from the walls, and also provide some shade for the windows when the sun is high in the sky.  

The lookouts consist of 2×6 lumber cut just under 4 feet long, and are installed like cantilevers.  One end is nailed one truss inside from the gable end truss.  The gable end truss is then notched so the 2×6 sits inside of it.  The other end is left loose as you can see above, and will eventually attach to the bargeboard.  This step is easier once the roof sheathing is on.

You should be able to visualize how the cantilever works in the picture above as all of the weight placed on the outer edge of the lookout will actually create an uplifting force on the inside truss.   This force will be nicely balanced by the weight of the roof.  You can also see why the lookouts need to be installed before the roof sheathing, as half of them will be covered up with the sheathing.

The subfascia attaches to the end of the truss tails.  Not only will I be using it to line up the ends of the trusses and ensure they are nice and straight, I will also use it as a support for the fascia, which I will describe next, and to provide nailing for the soffit, which won’t be added until a few more months in the build have passed.  Like the frieze blocks, the top of the subfascia is beveled to match the slope of the roof.

Straightening the trusses out sometimes requires a significant amount of force, Imagine yourself 20 feet up in the air, leaning out over the edge of the wall, trying to hold an 8 pound nailgun with one hand and applying a ton of force with the other hand… Not a pretty thought, is it?  Clamps give me an extra pair of hands so I don’t need to put myself in those kinds of positions.  Above you can see how I used two of them – one to move the truss slightly horizontally and another to move it vertically.

A couple makeshift brackets help support the subfascia while I’m getting it ready to nail in.  The main part of it was a 20 foot long 2×6 board, which weighs in at close to 50lbs.  It isn’t something you really want to carry up a 20 foot ladder!  With the brackets, I was able to pull the board up through the trusses and then ease it over the edge of the truss tails until it was lying on the brackets.  Then I would climb up the ladder to nail it in.  Once I was finished I pulled out the nails holding the bracket to the wall and set it to the side until the next time I need it.

 

The final step before attaching the sheathing is the fascia.  The fascia is pre-primed and textured since it is one of the first pieces we are adding to the house that will still be visible when construction is completed.  As you can see, it attaches directly to the subfascia.

Just like the previous parts I described, the top of the fascia is beveled to match the slope of the roof.  The edge of the roof sheathing will sit on top of the fascia.  When the gutters are added, they will run around the fascia and partially conceal it.

 

Step 11a – Frieze Blocks and Baffles

Working on the roof definitely has its perks when it comes to sunset!  Doesn’t show up as well in the picture but I had a beautiful view of a snow covered Mt. Baker there.  So when I ordered the roof trusses, I had specified that I wanted a 15″ energy heel.  This feature ensures that the attic insulation will maintain it’s full strength all the way to the edge of the wall.  I will be using blown-in cellulose insulation in the attic and to achieve my desired strength of R-60 I will need about 16.5″ of insulation (blown cellulose has an r-value of about 3.7 per inch)  A standard truss would slope all the way down to the top plate, leaving only the width of the truss chord between the ceiling and the roof.  For a net-zero home this is unacceptable.  So before we can apply the roof sheathing, the sides of the walls need to be built up to the same level as the roof, otherwise the cellulose would just fall out after we blew it in.

 

The pieces used to build up the wall are called frieze blocks.  If you look closely, you can see how I had to add in a layer of plywood to ensure that the blocks were tall enough.  In addition, I beveled the top edge of each block so that it would match the slope of the trusses.  Any place in the house where insulation exists, it becomes very important to have an airtight seal all around it.  The beveled edge will make it much easier to air seal the frieze block to the trusses on the sides, and to the roof sheathing on top.

 

You might notice that every third frieze block is a few inches shorter than the others.  The spaces there will be used for baffles.

A baffle is used to ventilate the attic.  Even with a perfectly installed roof and airtight seals all around the insulation, moisture has a knack of finding its way into pretty much anyplace you don’t want it to be.  The most effective way to remove this unwanted moisture that could potentially lead to rot and mold is to use moving air.  The air will enter the attic through the baffle and warm slightly, causing it to rise and eventually exit through the ridge vent at the peak of the roof.  As the air completes this journey, it will pick up any moisture that exists in the attic.  As you can see below, the baffle is more than just an opening through the wall of frieze blocks.  It is actually more like an air tunnel that runs over the top of the insulation.  Again, recall that it is extremely important to ensure no moving air comes into contact with the insulation. 

If you can imagine the roof sheathing going on over the top of this baffle, it will create a 2 inch wide air tunnel through the attic between the two layers of wood.  Below you can get a good look at the frieze block from the bottom.  Several months from now, practically this entire area you see will be filled with energy saving insulation.  You can also see where I added hurricane ties to lock the trusses to the top plates of the walls.

 

 

 

 

 

 

 

Step 11 – Install the Roof

The first part of building the roof is to “roll trusses”.  Although some old fashioned builders prefer to frame their roofs one piece of lumber at a time, when building solo it can be dangerous to handle large roof framing members when you are two stories up in the air.  Most modern builders order the roof trusses premade and then have them placed on their sides on top of the house with a crane.  Then all you have to do is to drag each truss to it’s proper location and roll it upright to a vertical position.

Before they arrived I made sure to plumb and line the second story walls. This was relatively easy because with the floor already in, I knew the first story was locked in very tightly. This meant I could use it to brace the second, which I did with the plumb bob and 20’ 2x4s just like I did on the first.  On a side note, if anyone ever tells you that it’s impossible to carry 20′ 2x4s in a Ford F-150 without a $300 rack you can show them this as proof they are wrong.

The trusses arrived on a long flatbed, and the driver used a crane to hoist them 20’ up to the top of the second story wall.  They came in two stacks so I had him lay one down in the middle of the house and the other standing up at the other end. I used some long vertical 2x4s to support the vertical set so they wouldn’t fall over the side of the house.   I was fortunate to have my friends Michael and PJ helping me as the 24’ long, 5’ high trusses are pretty heavy for a one man operation.

Here you can see the three long vertical 2x4s and a small clamp at the bottom that is holding the trusses tightly against them

We started with the stack that was lying down.  We grabbed the gable end truss and slid it down to the other end of the house where we slowly, carefully stood it up against vertical 2x4s just like the ones at the other end.  We nailed it to the top plate flush with the end, and then nailed a small 2×4 block to prevent the truss from falling back down. I had precut these pieces, which are called bird blocks, to 22 7/16” so they would fit snugly in the spaces between the trusses. We slid the next truss down and lined it up against the bird blocks, then used a 2×4 as a pole to push the truss up into its vertical position.  At that point we would end nail it into the bird blocks, and toenail it into the top plate.  Below you can see all 3 pieces together, with the trusses resting on the top plate, and the bird block fitting in between them.

We continued to repeat this process until we had rolled all the trusses in the first stack.  At that time, we ran a few 1×4 boards along the inside of the top chords to ensure they were spaced properly.  They also help to add lateral strength to the trusses to prevent them from rolling back over on their sides.  You can see them as the two darker lines near the center of the photo.

The second half of the trusses were installed in much the same manner, but was a good deal easier since the crane had already placed them standing up.  For these trusses, I installed the 1x4s first, and then used them as rails to ensure that the trusses would remain upright as we slid them into position one at a time.  If you can imagine how the rings on a shower curtain slide across the curtain rod, it might help you visualize the trusses sliding along the 1×4 rails.

If I haven’t made it clear before, building a house can be quite a surreal experience.  Here I am standing on top of a second story wall taking the above picture and marveling at what a phenomenal day it is while most of the rest of the world is hard at work, slaving away at jobs they don’t like to slowly chip away at 30 year mortgages.  If they only knew they could build a beautiful net zero home in such a serene suburb of a major city for less than 200k.  Oh, and not just any city – Vancouver was the only North American city to crack a European-dominated top 10 quality of living ranking of global cities.  (Mercer – 2017)

It looks a little messy with all the long 2x4s sticking up at the top and diagonally bracing the walls but this is the complete skeleton of the house!

Step 10 – Frame the Second Floor

You can see how I’ve been trying to keep the OSB flooring dry with a tarp but with the walls going up it is difficult.  Luckily, I spent some extra money on Weyerhauser EdgeGold OSB subfloor and according to their reps they are perfectly fine to get wet for a few weeks as long as they are given time to dry out.

Framing the second floor is not a whole lot different from framing the first.  Whereas on the first floor, the sill plate was pressure treated lumber, this isn’t necessary on the second.  Also, the bottom plate was bolted to the concrete foundation on the first floor, but on the second we simply nail it to the rim joists as you can see below.

Before raising the exterior walls, I toe-nailed the inside edge of the bottom plate to the floor boards.  These nails help enure the wall stays in position and doesn’t fall off the house before it gets nailed into place.

After going up and down the ladder many times cutting pieces for the walls I decided it was time to build something permanent.  The finished house will have a large spiral staircase but it would get messed up pretty quickly during building (as well as annoying) so instead I just threw together a makeshift ladder from some scrap wood.

Whereas the first floor walls were pretty simple, things got slightly more complicated on the second floor with the master bathroom as it has walled off areas for the shower, toilet, and two walk-in closets.  Several of these walls are angled, and one of the master bedroom walls is actually curved! 

Creating an angled wall is pretty simple.  You can see I have two walls meeting at a 45 degree angle on both the left and right side of the picture.  All you do is miter both top plates and bottom plates at 22.5 degrees so that when they fit together they create a 45 degree angle.  You can see how the studs meet on the inside wall and the small gap on the outer wall will be covered with a metal corner bead under the drywall.

At the center of the pic above I actually have three walls coming together in the shape of a ‘Y’.  For these I mitered the two arm walls with 45 degrees and joined them to a straight wall.  When it came time to add the top plate I had to do cut a special piece to fit with a jigsaw.

To build the circular wall, I had some 3/4 inch plywood ready.  I created a makeshift compass to get the right radius for the wall and transfer it to the plywood.  Then I drew out a second radius exactly 3.5 inches smaller than the first for the inside of the wall plate.  Sandwiching two of these pieces together, I ended up with an equivalent to a ‘curved’ 2×4.

File Dec 15, 7 59 33 PM

The one thing about a curved wall is that it uses a lot of studs!  The far side of the wall will curve right around the spiral staircase when it is installed. (I haven’t cut the opening completely yet for safety)

B5ED2F11-DA38-403F-BFC3-71B6F75B907D

Step 9a – Install Blocking and Plumbing

Before the subfloor can be nailed onto the joists, small sections of 2×12 called “blocking” must be installed.  Together with the rim joists they ensure that the floor joists won’t roll onto their flat sides where they can easily bend.  The blocking is placed along the top of the interior bearing wall at the exact place where the two floor joist spans meet and nailed perpendicularly between them.   I kept all the plumbing of the house on interior walls so I wouldn’t take any precious space away from my insulation inside the exterior walls.  My interior bearing wall being the major wall on the first floor, this meant that it had a significant amount of plumbing running through it.  The plumbing runs through the middle of the wall, and all of the DWV pipes must be vented vertically through the roof.  These pipes want to go through the middle of the interior bearing wall and exit right into the middle of my blocking!  My solution was to simply install a double set of blocking with the pipes in the middle.

Here you see the normal blocking at the outer edges of the pic and the modified blocking in the middle. The 2×6 boards at the bottom of the pic are for me to walk on until the floorboards are installed! Note how the joists from each exterior wall meet in the middle at this point.

In addition, I had planned for some of these pipes to run horizontally in the space between the floor joists.  For example, the washing machine is on the second floor, but the space I want to put it in doesn’t have a wall below it on the first floor.  If I didn’t run the pipe horizontally I would have a pipe for the dirty clothes water running through the center of the guest bedroom!  So this horizontal run would need to make a turn through the blocking so it would run in the space between the floor joists.

The pipe on the left makes a 90 degree turn to run between the floor joists while the one on the left goes straight through the blocking and will continue through the 2nd floor walls and out through the roof

 

 

All of my planning really paid off because some of the runs of ABS pipe were required to have cleanouts.  If I hadn’t installed them before running the vertical pipe up through the blocking it would have been a pain to do later.  The one you see below will be covered with a bench seat at the dining room table.  In case of a plumbing emergency the cushion can be taken off the seat and a hinged panel will provide access to the cleanout.

For a contractor, calling the plumber out before the entire house is framed is unusual.  I’m sure they would have been able to come up with a solution without breaking their routine, but I’m also pretty sure it wouldn’t have been as neat and efficient as my solution.  For me, it was very easy to stop framing for half the day and work on some plumbing so that I could finish with the blocking.  Yet another great example of the flaws in building a house with contractors…

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 9 – Frame the Floor

Flooring is pretty basic, and if you’ve ever noticed how a deck is built then you have the gist of it.  Long boards called joists are laid out parallel with each other and on their sides so they won’t bend easily.  4×8 sheets of plywood or OSB are laid out over the top of the joists to create a flat, sturdy surface.  The joists are supported by some of the first floor walls.  As I mentioned before, one of my interior walls is a load bearing wall, so it will be used to transfer half the weight of the second floor of the house down to the ground .  The 2nd floor interior walls will rest on the subfloor, which will in turn rest on the floor joists.  Since the floor joists span all the way from the exterior walls to the interior bearing wall, they will need to handle a significant amount of the weight of the house, which they will then transfer to the exterior walls and the interior load bearing wall.  The pic below might help you visualize…

Notice how much weight is carried by the load-bearing wall in the middle

Proper joist sizes can easily be figured out from the IRC (International Residential Building Code) using a table in the same way you calculate header sizes.  For me, that meant looking at the part of the table that dealt with 24 inch joist spacing since that is what I’m using.  Then figure out what the greatest distance the joists will span is, which for me is just slightly over 14 feet.  Last, select a lumber option that supports a minimum span greater than this distance.  I decided to go with #2 2×12 Douglas Fir, which supports a span of up to 16’6″.  Going with an option suitable for a span larger than what I need will hopefully give me a less bouncy, less squeaky floor.

Lifting 16 foot 2×12’s 10 feet up in the air solo is a great workout.  After cutting each joist to length.  I lifted one side up in the air and rested it on the top of an exterior wall.  Next I moved a ladder near the interior bearing wall and lifted the other end of the joist up so I could rest it on the top of the ladder.  After climbing up a few rungs on the ladder, I had enough height where I could lift the joist from the top of the ladder to rest on the interior wall.  Just as with the wall framing, it was important to ensure that the crown of the lumber faced the sky.

The first joists I installed are called the rim joists.  These run on the top of the exterior walls perpendicular to the rest of the joists.  Above you can see the rim joist on the left side of the corner and the outermost floor joist on the right side.  Using rim joists ensures that there is a perimeter of joists all the way around the house even though the majority of the joists run in the same direction.  The rim joists are “toe-nailed” to the top plate, meaning that they are nailed diagonally.  Once the rim joists are up, the other joists are placed perpendicular between them and nailed to the rim joists, as well as toe-nailed to the exterior walls.

The opening for the stairway required a little bit of detail.  The code requires joists to be doubled all around the opening.  In addition, any time you are unable to rest a joist on a bearing wall, you must use steel joist hangers to carry the weight around to where it can reach a bearing wall.  The manufacturer of the hangers (in this case Simpson Strong-Tie) tells you what kind of nails you must use and what amount of weight the hanger is capable of carrying.

Step 8c – Plumb and Line

With all of the 1st floor walls complete, it was neat to be able to navigate the rooms and get an idea of the feel of the dimensions of the house.   Before moving on to the 2nd floor I needed to take some time to ensure that all of my framing so far is straight, level, square, plumb, and true.  (For those who don’t know what the last two are, plumb means perpendicular to level and true means both level and plumb at the same time)  Once the subfloor is nailed to the floor joists it will tie everything together so this was my last chance to make sure it was just right.

I started by double checking the lengths of the top and bottom plates, and the lengths of the corner studs.  Next, I used a plumb bob to ensure each of the corners was plumb.  I used long 2×4’s nailed diagonally and nail stakes in the ground to push or pull the end of each wall as needed to plumb the ends of the wall.  I knew the foundation was level, so since the wall lengths were equal and plumb, I knew the walls were square and true as well.  I repeated the process for each wall, and then checked each wall for straightness.  Now I knew the corners were right, but in the middle of the wall there might be some waving.  I nailed a 2×4 block to the top corner on each end of the wall and stretched a string tightly between them.  Using a third 2×4 block, I checked all along the wall to ensure this block fit snugly between the wall and the string.  Where necessary I used additional bracing to make the wall straight.

With the exterior walls (hopefully) perfect, it was time for the interior walls.  I used a powder actuated hammer tool to nail the bottom plates of the interior walls into place.  This uses a .22 caliber explosive to drive the nail into the hard concrete.  You insert the nail into one end, put the .22 caliber load in the middle, and then strike the other end with a hammer.  The blow ignites the load, driving the nail in.  I double checked all of the measurements for the walls to ensure they were straight and then used the powder actuated hammer tool to attach them to the concrete.

Once again, I used the plumb bob to square up the walls and attached them to the exterior walls with a splice plate.  I used additional bracing on the one long wall, but the others were so short that they should stay straight.

With this crucial step of straightening done, I was now confident enough to get going on the joists.

Step 8b – Frame the Interior Walls

In my last post, I discussed how using advanced framing would help me lower my heating bill by creating more space for insulation.  However, insulating a house is just one of the ways to reduce the amount of energy needed to heat (or cool) a house.  No matter how much insulation I put in the house, if I don’t control the air that is allowed to flow through the walls  it will be impossible to control the temperature.

Air is able to transfer heat using convection.  This is great when you are using a furnace or a heat pump to blow nice hot air into the house during the winter, but in many houses, that air is allowed to escape back outside through tiny cracks and crevices all throughout the house.  According to the US Dept of Energy, up to 30% of heating and cooling cost is due to lack of air sealing.  One of the places where air can escape is in the tiny gap between the sill plates of the walls and the concrete foundation.  While I did place a sheet of sill gasket in that area, that was only to prevent water from wicking up the concrete and into the walls.  The sill gasket is air permeable, meaning air can pass through it.  I needed to add an additional layer that was air impermeable to fill the gap, and some all-weather caulk fit the bill nicely.

Countless houses leave this crucial step for later, or skip it altogether.  The best time to do it is now, though, because after I frame the interior walls it will be nearly impossible to caulk the spaces where they connect to the exteriors.

Image result for continuous drywall intersection

Another technique I will be utilizing to control air movement is using “continuous drywall”.  This means that the drywall will slide in behind the wall framing for the interior walls, resulting in fewer joints in the drywall and thus fewer opportunities for air infiltration.  Each of these small details contributes just a little more energy savings and helps to get the house to achieving net-zero.  Above you can see a pic of an intersecting wall with continuous drywall, which is the method I will be using, and below is a traditional method that the majority of builders use.

 

 

 

 

 

 

The drywall won’t be installed until later in the build, at least until the roof and siding are installed.  Drywall doesn’t perform very well when it gets wet.  This means I will need to leave a gap in between the exterior walls and any interior walls that run into it.  I cut small scrap pieces so they were 3/4″ thick and used them as spacers to ensure the gap was sufficient.  Even though the drywall is only 1/2″ thick the extra 1/4″ will allow me to slide it in the gap without damaging it.  I used the spacers at both the bottom of the wall and at the top as you can see below.

You can also see the line of caulking that follows the entire perimeter of the house

Splice plates are used to hold the top of the wall in place

I used standard framing instead of advanced framing for the interior walls since they don’t require any extra room for insulation.  This meant spacing the studs at 16″ on center instead of 24″ like I did with the exterior walls, and capping the studs with a double top plate instead of a single.  Additionally, I used 2×4’s to frame most of the interior walls instead of the 2×6’s I used on the exterior.  I did use 2×6’s on several of the interior walls that contained large plumbing pipes.  This will give me a little more room to play with as some of the pipes are over 3″ in diameter and the 2×4’s are only 3.5″ wide.  Beyond that, framing the interior walls is just the same as the exterior.  Mark the stud locations on the top and bottom plates and then nail them in.  A few details were needed for bedroom and bathroom doors as well as intersecting walls but overall it is a pretty simple process.  The second top plate is added on after the walls are up and is staggered in a way that ties all the walls together as you can see below.

 

Step 8a – Utilize Advanced Framing Techniques

To an experienced framer, the work I have completed over the last couple of days would seem wrong.  It is quite possible they would never have seen a house framed the way that I am framing mine.  A few might even claim that I am violating building codes in not following “standard practice”.  The fact is, I am utilizing a method of framing created in the 1970s in a collaboration between the U.S. Deparment of Housing and Urban Development and the National Association of Home Builders Research Foundation.  Their goal was to reduce the amount of wood used in construction, not only to save the lumber, but more importantly, to create more space for insulation and save on energy usage.  All of these small changes work to ensure the house will be net-zero!

Image result for photo of advanced framing vs traditional

As you can see above, in traditional framing you have a single sill plate at the bottom of the wall connected to a series of studs spaced 14 1/2″ apart from each other (16″ on center) which are then connected to two top plates sandwiched together.  Additional shorter studs called “jack studs” are used to support headers above window and door openings.  Even more studs are used to anchor interior walls to the exterior.  All of the wood used are 2x4s, leaving 3 1/2″ of space between the studs for insulation.

In advanced framing, on the other hand, only a single top plate is used, studs are spaced 22 1/2″ apart (24″ O.C.), and metal “header hangers” are used instead of the jack studs.  On “gable end” walls, no headers are needed at all! (see below) “Ladder framing” is used to anchor interior walls and 2×6 lumber is used, leaving 5 1/2″ of space for insulation (obviously that’s the part of the wall that looks like a ladder in the pic)

The advanced framing system is cheaper because it uses 5% to 10% less lumber, and it is faster because it uses 30% fewer boards (although they are a bit bigger and heavier). More importantly, every single year more money is saved on energy costs because over 60% more insulation can be filled in.

This is a gable end wall, meaning it will extend all the way to the peak of the roof without slanting. Because of this, you can see I don’t have to use headers above the windows. (And yes, that is just a very light dusting of snow)

Okay, so what’s the catch?  If advanced framing was added to the building code over 40 years ago, is cheaper and faster, and reduces the energy bill every single month, then why isn’t it standard operating procedure for builders?  How could I possibly be telling you that most builders don’t even know about it?  While I could devote several pages answering that very question, I’ll do my best to sum it up quickly.  Building a house is difficult.  There are very few people who have the knowledge to do it all themselves and I may very well fall flat on my face in trying.  For me, that challenge is exciting, even if it is frustrating at times.  Because of this fact, the vast majority of houses are built by a massive team of “contractors” that under normal circumstances communicate very little with each other, if at all.  These tradesman are managed by a “general contractor” who uses building plans that were probably drawn up by an architect and edited by an engineer.  Although I was able to sum up the advanced framing techniques in a couple sentences, the small changes affect every single one of these workers.

Image result for photo of advanced framing vs traditional

The architect and the engineer must design the house from the very beginning so the floor joists and studs stack up within an inch of each stud (see pic above)  This puts a sort of limiting factor on the architect in regards to wall lengths and window placements that many are resistant to.  Next, the general contractor must be open to training the contractors under him because many of them will be unaccustomed to the framing.  The framing crew will be working with a different length of wood due to the single top plate, and have to frame completely differently than they are used to.  The electrician has fewer studs to attach electrical boxes to.  The drywall crew has fewer studs to nail the drywall to and may have to hang it differently.  The small changes ripple right on down the line and affect every single person that works on the house.  As contractors are paid by the job and not by the hour, they aren’t too keen on taking time to learn this new technique.  The fewer that learn it, the fewer that are available to teach it, and the cycle continues…

As I’m building solo, I have none of these issues.  I designed the house myself from the very beginning with advanced framing in mind.  Thanks to my mentor, who introduced me to advanced framing, I’ve never built any other way.  I saved money on lumber and nails.  I saved time with fewer studs to nail together.  I saved trees because of using less lumber (I’ll be using dense packed cellulose in the spaces where the studs would have been which is made of mostly recycled newspaper and denim).  I will save money on my energy bill each month (or be able to use a smaller solar array).  I even save time building because with the larger spacing between studs I can jump in an out of the house anywhere instead of using a doorway.  If you really want to save sustainably, advanced framing is the way to go.

 

Step 8 – Frame the First Floor

After spending the weekend spraying the new slab down every hour or so, it was finally time to get the walls up!  This process of “wet curing” concrete can add up to 50 percent more strength when done for 3-7 days because it prevents the water inside the concrete from evaporating.  While many contractors immediately begin framing the house the day after the concrete is poured with no problems, I played it safe and waited until the 3rd day to get going.

The first step was to “snap lines” (see pic above) where the walls would go.  This will help me to ensure the bottoms of the walls stay straight and square to each other.  I took several measurements of the footings, including the diagonal measurements from corner to corner, to decide where to start.  The footings came out really good, but not perfect (this is my first solo build, after all!)  There will be a few small areas of concrete that stick out a bit or don’t come out far enough.  This is no problem at all structurally and visually it will be covered up by the siding, but in taking these measurements I was able to position the walls to minimize it as much as possible.

Here you can see where the concrete sticks out a half inch

The exterior walls will be framed on 2×6’s, so the first lines I snapped mark where the inside edge of the bottom plates will go, 5.5 inches in from my starting corner (for those not in the know, a 2×6 is actually only 5.5 inches wide on average)  Snapping lines is done using a chalk reel, which is basically a spool of string inside of a metal casing.  The casing has a sliding door so that you can fill it with chalk, that way when you pull out the string it gets covered in it.  I would put the end of the string on my mark on one end of the footing and weight it down with my sledge hammer, then allow the chalked string to unroll as I walked to the other side.  By pulling the string taut against the concrete and then lifting it just an inch, the line snapped back down leaving a neat line of chalk behind.

Once I had marked all the exterior walls, I grabbed the first sill plate from my pile of lumber and cut it down to 20′ (most lumber yards give you an extra 1/2 inch or so).  I lined it up on my line and marked out the anchor bolt locations, and then drilled them out.  (Remember that the bolts were embedded in the concrete footings so just the top part is sticking out)  Then I placed it over the bolts and made sure it lined up just right.  I repeated the procedure all the way around each wall until I had all 4 done.  With the placement of the exterior walls now set, I was able to measure out the locations of the interior walls and snap those lines as well.  It will be much easier to mark them now and serve as a sort of map to where my interior walls will be going.

I had to call a friend over to help me carry the 32′ long LVL top plate from the lumber pile over to the slab, and we set it on edge next to the bottom plate, which I had also turned on edge.  I used some clamps to hold them together perfectly lined up, and then used a tape measure to mark out the stud locations every 2 feet.  I had ordered the studs precut so that saved me a lot of time.  I just had to carry them over from the lumber pile and then inspect them and “crown” them.  Lumber being a product of nature is never perfect.  Sometimes they have significant bends or waves in them and I will save those for later.  The straighter ones I will use now, but even the straighter ones have a bit of a curve or “crown” in them.  I lined the crowns up all going the same direction which will make it easier to straighten them out later in the build.

 

 

 

Once all the studs were laid out on my marks it was just a matter of nailing them together.  Building codes offer several different ways to satisfy nailing requirements, and the one I chose will be 3 16D nails to connect each stud to the top and bottom plates.  I took my time and carefully aligned each stud to ensure that it didn’t stick out on either side of the top plate.  It is situations like these where even with my lack of experience I can guarantee I put together a better wall than 90% of the framing crews since they are focused on speed over quality.

For the window openings, a larger piece of lumber must be used to carry the load from the opening that is missing a stud to the studs on either side of it.  Again, building codes dictate several ways to satisfy these header requirements, and for mine I chose a single 2×10.  I will also be utilizing some metal hangers to carry the weight of the header instead of shorter studs called jack studs, although you can see that I did use jack studs for the entry door in the pic below.

The jack studs are the ones that are shorter than the regular studs on either side of the door opening

Once all the lumber was nailed together, I unrolled some “sill gasket” and placed it over the footing where the wall will be hoisted.  I also nailed some long 2×4’s to the top of the wall.  As we raise the wall, these boards will swing out and brace it.  The wall was very heavy but with a few friends we were able to get it airborne with ease.  Once it was vertical, I staked down the bracing boards and then screwed the nuts down over large square washers on the anchor bolts.

If you look closely you can see the white sill gasket underneath the bottom plate

Within a couple days I was able to finish the remaining 3 walls and raise them into place as well.  It’s so much fun to see my vision becoming reality!

The long 2x4s in front forming an ‘x’ are the bracing pieces I was talking about