Step 11d – Inspection, Bargeboard, and Gable Overhangs

I’m tantalizingly close to reaching that glorious step where rain will no longer be able to harm the OSB roof sheathing or subfloor but a few key steps remain.  Most importantly, there is currently no roof sheathing on the gable end overhangs.  As you can see in the pictures, I only installed the sheathing up to the gable end trusses instead of extending it out to the ends of the lookouts, which is where the roof will eventually end.  The reason for this is that the bottom of the gable end overhang sheathing is going to be visible from below, and the OSB I used for roof sheathing has a very cheap look to it and can tend to flake off when exposed to the elements.  Plywood looks ten times better and will hold up much better to the elements, so it’s worth making the transition from the OSB to plywood just for those gable end overhangs.  This part of the roof isn’t structural however, so it wasn’t part of the roof sheathing inspection I passed yesterday.  The plywood is only to add a nice aesthetic touch.

The other item that needs to be installed before adding the roof underlay is the bargeboard.  Made of the same primed, textured wood as the fascia, the bargeboard will attach to the fascia and run along the edge of the lookouts up to the ridge.  Once it is in place, the roof will be entirely surrounded by this finished wood.  Before nailing it on, I climbed up the roof and measured the lookouts, recording the length of the shortest lookout on each side (they varied up to 3/8″).

I grabbed what was left of the primed, textured, wood and beveled the top edge at 22.6 degrees on each side, to form the shape you see below.  I also cut each piece to the length I had recorded for the side it would be attached to.  I toenailed these pieces on to each end of the roof ridge, and then snapped a chalk line across the lookouts, holding one end of the line on the edge of the ridge pieces, and the other just grazing the end of the shortest lookout.  This gave me a visual as to which of the lookouts needed to be trimmed just a bit so they would all be even.  After cutting them down with a circular saw, I mitered one end of the bargeboard and brought it up to the roof.  I eased it over the edge and lined up the top side with the tops of the lookouts, clamping it in place.  Next, I marked the other end of the bargeboard where it crossed the center of the ridge piece and cut it along this line, then nailed it to the ends of the lookouts using galvanized nails (as these nails will be exposed to the elements).

With the bargeboard in place, I ripped a sheet of plywood in half the long way, and used my winch and rails to reel the two pieces up to the top of the roof.  I lined one end up so it was about a 1/4″ from the edge of the bargeboard and tacked it down to the lookouts.  I then ran my circular saw along the opposite edge of the plywood deep enough so it would cut through the OSB sheathing.  This trimmed off about 3/4″ of the OSB sheathing, exposing half of the gable end truss to support the plywood.  This was important so I would have something to nail the plywood into.  I cut the second piece of plywood so it lined up over the fascia the same distance as the OSB sheathing, and then thoroughly nailed the plywood to the gable end truss, lookouts, and bargeboard.

Here you can see the process in action with step 1 trimming the lookouts on the right side, step 2 placing the bargeboard on the left side, and then step 3 adding the plywood towards the center of the pic

As I’ve said before, there’s nothing quite like working on a roof when it’s a beautiful day!

Step 11b – Lookouts and Fascia

Two other items that need to be installed before adding the sheathing are the lookouts, fascia, and subfascia.  These elements will work together to add some flair to the edge of the roof line.  The lookouts run along the gable ends of the house, and will not only give a nice look to the trim, but will also support the outer edge of the roof, which will run a couple feet beyond the walls of the house.  These overhangs help to keep rain away from the walls, and also provide some shade for the windows when the sun is high in the sky.  

The lookouts consist of 2×6 lumber cut just under 4 feet long, and are installed like cantilevers.  One end is nailed one truss inside from the gable end truss.  The gable end truss is then notched so the 2×6 sits inside of it.  The other end is left loose as you can see above, and will eventually attach to the bargeboard.  This step is easier once the roof sheathing is on.

You should be able to visualize how the cantilever works in the picture above as all of the weight placed on the outer edge of the lookout will actually create an uplifting force on the inside truss.   This force will be nicely balanced by the weight of the roof.  You can also see why the lookouts need to be installed before the roof sheathing, as half of them will be covered up with the sheathing.

The subfascia attaches to the end of the truss tails.  Not only will I be using it to line up the ends of the trusses and ensure they are nice and straight, I will also use it as a support for the fascia, which I will describe next, and to provide nailing for the soffit, which won’t be added until a few more months in the build have passed.  Like the frieze blocks, the top of the subfascia is beveled to match the slope of the roof.

Straightening the trusses out sometimes requires a significant amount of force, Imagine yourself 20 feet up in the air, leaning out over the edge of the wall, trying to hold an 8 pound nailgun with one hand and applying a ton of force with the other hand… Not a pretty thought, is it?  Clamps give me an extra pair of hands so I don’t need to put myself in those kinds of positions.  Above you can see how I used two of them – one to move the truss slightly horizontally and another to move it vertically.

A couple makeshift brackets help support the subfascia while I’m getting it ready to nail in.  The main part of it was a 20 foot long 2×6 board, which weighs in at close to 50lbs.  It isn’t something you really want to carry up a 20 foot ladder!  With the brackets, I was able to pull the board up through the trusses and then ease it over the edge of the truss tails until it was lying on the brackets.  Then I would climb up the ladder to nail it in.  Once I was finished I pulled out the nails holding the bracket to the wall and set it to the side until the next time I need it.

 

The final step before attaching the sheathing is the fascia.  The fascia is pre-primed and textured since it is one of the first pieces we are adding to the house that will still be visible when construction is completed.  As you can see, it attaches directly to the subfascia.

Just like the previous parts I described, the top of the fascia is beveled to match the slope of the roof.  The edge of the roof sheathing will sit on top of the fascia.  When the gutters are added, they will run around the fascia and partially conceal it.

 

Step 10 – Frame the Second Floor

You can see how I’ve been trying to keep the OSB flooring dry with a tarp but with the walls going up it is difficult.  Luckily, I spent some extra money on Weyerhauser EdgeGold OSB subfloor and according to their reps they are perfectly fine to get wet for a few weeks as long as they are given time to dry out.

Framing the second floor is not a whole lot different from framing the first.  Whereas on the first floor, the sill plate was pressure treated lumber, this isn’t necessary on the second.  Also, the bottom plate was bolted to the concrete foundation on the first floor, but on the second we simply nail it to the rim joists as you can see below.

Before raising the exterior walls, I toe-nailed the inside edge of the bottom plate to the floor boards.  These nails help enure the wall stays in position and doesn’t fall off the house before it gets nailed into place.

After going up and down the ladder many times cutting pieces for the walls I decided it was time to build something permanent.  The finished house will have a large spiral staircase but it would get messed up pretty quickly during building (as well as annoying) so instead I just threw together a makeshift ladder from some scrap wood.

Whereas the first floor walls were pretty simple, things got slightly more complicated on the second floor with the master bathroom as it has walled off areas for the shower, toilet, and two walk-in closets.  Several of these walls are angled, and one of the master bedroom walls is actually curved! 

Creating an angled wall is pretty simple.  You can see I have two walls meeting at a 45 degree angle on both the left and right side of the picture.  All you do is miter both top plates and bottom plates at 22.5 degrees so that when they fit together they create a 45 degree angle.  You can see how the studs meet on the inside wall and the small gap on the outer wall will be covered with a metal corner bead under the drywall.

At the center of the pic above I actually have three walls coming together in the shape of a ‘Y’.  For these I mitered the two arm walls with 45 degrees and joined them to a straight wall.  When it came time to add the top plate I had to do cut a special piece to fit with a jigsaw.

To build the circular wall, I had some 3/4 inch plywood ready.  I created a makeshift compass to get the right radius for the wall and transfer it to the plywood.  Then I drew out a second radius exactly 3.5 inches smaller than the first for the inside of the wall plate.  Sandwiching two of these pieces together, I ended up with an equivalent to a ‘curved’ 2×4.

File Dec 15, 7 59 33 PM

The one thing about a curved wall is that it uses a lot of studs!  The far side of the wall will curve right around the spiral staircase when it is installed. (I haven’t cut the opening completely yet for safety)

B5ED2F11-DA38-403F-BFC3-71B6F75B907D

step 9b – Install the Subfloor

Solving small problems is a huge part of building.  I’ve always enjoyed crossword puzzles and the like, so I shouldn’t be at all surprised that I am enjoying building the house so much.  Today’s problem was how to lift 24 sheets of OSB panels 11 feet up in the air.  (2 feet of foundation + 8 feet of wall + 1 foot of joists = 11)  You see, each panel is 4 feet wide and 8 feet long, and weighs 59 pounds, so not only are they heavy, but it is difficult just to get your arms around one.  My solution was to build a small section of scaffolding about 6 feet long and 5 feet high.  Then I would carry the OSB over to the scaffolding while holding it just like this guy is.

Turning it so the shorter side is down, I then lifted it up onto the scaffolding

Then I would climb up to the top, grab the end of it and pull it the rest of the way up.  This was easy once I had a couple of them already up there to stand on but for the first ones I had to just stand on a couple of 2×6 boards that I had laid out perpendicular across the joists.  Have I mentioned that building a house is a great way to face your fear of heights?  I lifted every single one of the 24 boards up to the top of the wall in this same manner.  The first row you attach is the most important one to be straight because all the other rows will interlock with it.  I used my chalk reel to snap a line 4 feet in from the edge to ensure that I got it just right.  Next, I applied a liberal bead of elastomeric construction adhesive to the top of the joists.

PL400 is highly recommended for subfloor gluing

I set the board down over the joists so it lined up with the one corner of the house and ensured that the other end was halfway onto a joist.  This is the reason why I lined the joists up 24″ on center.  The 8′ long panel spans 4 joists and on the outer joists it leaves enough space to share the joist with another panel.  Once the panel is perfectly lined up the code calls for it to be nailed with 8d common nails every 6″ on the edges and every 12″ in the middle areas where a joist runs under it.  The boards are marked out so you can easily find the spots where these nails should go if the joists were lined up correctly.  If you look closely you can see them…

You can also see how I left a small gap in between each board to allow for expansion due to heat and/or moisture.  Four of these 8′ long panels were enough to run down the length of the house.  For the next row, I cut a panel in half.  Staggering the seams in this way adds strength to the floor.  With the first two rows complete you can see how the staggering seams look.  Notice how I positioned the other boards so I could walk around as I worked.

When I got to the row above the blocking I used a sander to make sure that none of the blocks stuck up above the joists.  I also measured out where pipes would go through so I could easily find them later.  One of the pipe fittings stuck up above the joists so I had to cut a hole for it in the OSB.

There’s the pipe I cut out a hole for on the right side and if you look closely you can see where I marked out where the other pipe will penetrate the flooring as it heads up to the roof vent

Luckily I thought ahead a little bit and before I got to the last panel I cut out a hole for the stairway opening.  Otherwise I wouldn’t have been able to get back down!  The opening will eventually be much larger but for safety reasons I left it just big enough to allow for comfortable access.  I marked a warning on the areas that will eventually be cut out because there aren’t any joists underneath.  The OSB floorboards are strong but without a joist underneath they could easily break.

The last step was to run a circular saw all the way around the perimeter to remove any protrusions.  Because of the small gap between each board there was about a 1/4 inch left around the edges.  That and the stairway opening was the only waste I had.  This is very rare in today’s average construction job as the house plans usually call for a bunch of details and angles in the floor.  Contractors cut panels in all sorts of ways as needed and then discard what they don’t use, which can be a substantial amount.  This is one of the benefits of designing a house yourself.  I specifically designed the house with dimensions divisible by 4 feet for this very reason.

Step 9a – Install Blocking and Plumbing

Before the subfloor can be nailed onto the joists, small sections of 2×12 called “blocking” must be installed.  Together with the rim joists they ensure that the floor joists won’t roll onto their flat sides where they can easily bend.  The blocking is placed along the top of the interior bearing wall at the exact place where the two floor joist spans meet and nailed perpendicularly between them.   I kept all the plumbing of the house on interior walls so I wouldn’t take any precious space away from my insulation inside the exterior walls.  My interior bearing wall being the major wall on the first floor, this meant that it had a significant amount of plumbing running through it.  The plumbing runs through the middle of the wall, and all of the DWV pipes must be vented vertically through the roof.  These pipes want to go through the middle of the interior bearing wall and exit right into the middle of my blocking!  My solution was to simply install a double set of blocking with the pipes in the middle.

Here you see the normal blocking at the outer edges of the pic and the modified blocking in the middle. The 2×6 boards at the bottom of the pic are for me to walk on until the floorboards are installed! Note how the joists from each exterior wall meet in the middle at this point.

In addition, I had planned for some of these pipes to run horizontally in the space between the floor joists.  For example, the washing machine is on the second floor, but the space I want to put it in doesn’t have a wall below it on the first floor.  If I didn’t run the pipe horizontally I would have a pipe for the dirty clothes water running through the center of the guest bedroom!  So this horizontal run would need to make a turn through the blocking so it would run in the space between the floor joists.

The pipe on the left makes a 90 degree turn to run between the floor joists while the one on the left goes straight through the blocking and will continue through the 2nd floor walls and out through the roof

 

 

All of my planning really paid off because some of the runs of ABS pipe were required to have cleanouts.  If I hadn’t installed them before running the vertical pipe up through the blocking it would have been a pain to do later.  The one you see below will be covered with a bench seat at the dining room table.  In case of a plumbing emergency the cushion can be taken off the seat and a hinged panel will provide access to the cleanout.

For a contractor, calling the plumber out before the entire house is framed is unusual.  I’m sure they would have been able to come up with a solution without breaking their routine, but I’m also pretty sure it wouldn’t have been as neat and efficient as my solution.  For me, it was very easy to stop framing for half the day and work on some plumbing so that I could finish with the blocking.  Yet another great example of the flaws in building a house with contractors…

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 9 – Frame the Floor

Flooring is pretty basic, and if you’ve ever noticed how a deck is built then you have the gist of it.  Long boards called joists are laid out parallel with each other and on their sides so they won’t bend easily.  4×8 sheets of plywood or OSB are laid out over the top of the joists to create a flat, sturdy surface.  The joists are supported by some of the first floor walls.  As I mentioned before, one of my interior walls is a load bearing wall, so it will be used to transfer half the weight of the second floor of the house down to the ground .  The 2nd floor interior walls will rest on the subfloor, which will in turn rest on the floor joists.  Since the floor joists span all the way from the exterior walls to the interior bearing wall, they will need to handle a significant amount of the weight of the house, which they will then transfer to the exterior walls and the interior load bearing wall.  The pic below might help you visualize…

Notice how much weight is carried by the load-bearing wall in the middle

Proper joist sizes can easily be figured out from the IRC (International Residential Building Code) using a table in the same way you calculate header sizes.  For me, that meant looking at the part of the table that dealt with 24 inch joist spacing since that is what I’m using.  Then figure out what the greatest distance the joists will span is, which for me is just slightly over 14 feet.  Last, select a lumber option that supports a minimum span greater than this distance.  I decided to go with #2 2×12 Douglas Fir, which supports a span of up to 16’6″.  Going with an option suitable for a span larger than what I need will hopefully give me a less bouncy, less squeaky floor.

Lifting 16 foot 2×12’s 10 feet up in the air solo is a great workout.  After cutting each joist to length.  I lifted one side up in the air and rested it on the top of an exterior wall.  Next I moved a ladder near the interior bearing wall and lifted the other end of the joist up so I could rest it on the top of the ladder.  After climbing up a few rungs on the ladder, I had enough height where I could lift the joist from the top of the ladder to rest on the interior wall.  Just as with the wall framing, it was important to ensure that the crown of the lumber faced the sky.

The first joists I installed are called the rim joists.  These run on the top of the exterior walls perpendicular to the rest of the joists.  Above you can see the rim joist on the left side of the corner and the outermost floor joist on the right side.  Using rim joists ensures that there is a perimeter of joists all the way around the house even though the majority of the joists run in the same direction.  The rim joists are “toe-nailed” to the top plate, meaning that they are nailed diagonally.  Once the rim joists are up, the other joists are placed perpendicular between them and nailed to the rim joists, as well as toe-nailed to the exterior walls.

The opening for the stairway required a little bit of detail.  The code requires joists to be doubled all around the opening.  In addition, any time you are unable to rest a joist on a bearing wall, you must use steel joist hangers to carry the weight around to where it can reach a bearing wall.  The manufacturer of the hangers (in this case Simpson Strong-Tie) tells you what kind of nails you must use and what amount of weight the hanger is capable of carrying.

Step 8 – Frame the First Floor

After spending the weekend spraying the new slab down every hour or so, it was finally time to get the walls up!  This process of “wet curing” concrete can add up to 50 percent more strength when done for 3-7 days because it prevents the water inside the concrete from evaporating.  While many contractors immediately begin framing the house the day after the concrete is poured with no problems, I played it safe and waited until the 3rd day to get going.

The first step was to “snap lines” (see pic above) where the walls would go.  This will help me to ensure the bottoms of the walls stay straight and square to each other.  I took several measurements of the footings, including the diagonal measurements from corner to corner, to decide where to start.  The footings came out really good, but not perfect (this is my first solo build, after all!)  There will be a few small areas of concrete that stick out a bit or don’t come out far enough.  This is no problem at all structurally and visually it will be covered up by the siding, but in taking these measurements I was able to position the walls to minimize it as much as possible.

Here you can see where the concrete sticks out a half inch

The exterior walls will be framed on 2×6’s, so the first lines I snapped mark where the inside edge of the bottom plates will go, 5.5 inches in from my starting corner (for those not in the know, a 2×6 is actually only 5.5 inches wide on average)  Snapping lines is done using a chalk reel, which is basically a spool of string inside of a metal casing.  The casing has a sliding door so that you can fill it with chalk, that way when you pull out the string it gets covered in it.  I would put the end of the string on my mark on one end of the footing and weight it down with my sledge hammer, then allow the chalked string to unroll as I walked to the other side.  By pulling the string taut against the concrete and then lifting it just an inch, the line snapped back down leaving a neat line of chalk behind.

Once I had marked all the exterior walls, I grabbed the first sill plate from my pile of lumber and cut it down to 20′ (most lumber yards give you an extra 1/2 inch or so).  I lined it up on my line and marked out the anchor bolt locations, and then drilled them out.  (Remember that the bolts were embedded in the concrete footings so just the top part is sticking out)  Then I placed it over the bolts and made sure it lined up just right.  I repeated the procedure all the way around each wall until I had all 4 done.  With the placement of the exterior walls now set, I was able to measure out the locations of the interior walls and snap those lines as well.  It will be much easier to mark them now and serve as a sort of map to where my interior walls will be going.

I had to call a friend over to help me carry the 32′ long LVL top plate from the lumber pile over to the slab, and we set it on edge next to the bottom plate, which I had also turned on edge.  I used some clamps to hold them together perfectly lined up, and then used a tape measure to mark out the stud locations every 2 feet.  I had ordered the studs precut so that saved me a lot of time.  I just had to carry them over from the lumber pile and then inspect them and “crown” them.  Lumber being a product of nature is never perfect.  Sometimes they have significant bends or waves in them and I will save those for later.  The straighter ones I will use now, but even the straighter ones have a bit of a curve or “crown” in them.  I lined the crowns up all going the same direction which will make it easier to straighten them out later in the build.

 

 

 

Once all the studs were laid out on my marks it was just a matter of nailing them together.  Building codes offer several different ways to satisfy nailing requirements, and the one I chose will be 3 16D nails to connect each stud to the top and bottom plates.  I took my time and carefully aligned each stud to ensure that it didn’t stick out on either side of the top plate.  It is situations like these where even with my lack of experience I can guarantee I put together a better wall than 90% of the framing crews since they are focused on speed over quality.

For the window openings, a larger piece of lumber must be used to carry the load from the opening that is missing a stud to the studs on either side of it.  Again, building codes dictate several ways to satisfy these header requirements, and for mine I chose a single 2×10.  I will also be utilizing some metal hangers to carry the weight of the header instead of shorter studs called jack studs, although you can see that I did use jack studs for the entry door in the pic below.

The jack studs are the ones that are shorter than the regular studs on either side of the door opening

Once all the lumber was nailed together, I unrolled some “sill gasket” and placed it over the footing where the wall will be hoisted.  I also nailed some long 2×4’s to the top of the wall.  As we raise the wall, these boards will swing out and brace it.  The wall was very heavy but with a few friends we were able to get it airborne with ease.  Once it was vertical, I staked down the bracing boards and then screwed the nuts down over large square washers on the anchor bolts.

If you look closely you can see the white sill gasket underneath the bottom plate

Within a couple days I was able to finish the remaining 3 walls and raise them into place as well.  It’s so much fun to see my vision becoming reality!

The long 2x4s in front forming an ‘x’ are the bracing pieces I was talking about

Step 7c – Pour the Slab

One thing I realized I forgot to document was that I placed a cardboard box around the DWV pipe for the downstairs tub and filled it with gravel.  This will allow me to easily break the thin layer of concrete over the box and pull out all the gravel, leaving a nice area around the pipe giving me plenty of room to work when I hook it up to the tub.  With that final step complete I was ready to pour the slab.

A freshly poured slab is an incredibly beautiful thing.  When it first comes out of a truck it looks like a messy slop of oatmeal with blueberries in it (the blueberries being the gravel).  A long, straight 2×4 is used as a “screed” and run back and forth to level the slop.

After about 20-30 minutes, the slop has started to gel a bit, and the gravel sinks down just a little.  At this time, a long pole with a metal “float” attached is run across the concrete.  The float pushes the gravel further down and brings this very creamy part of the concrete up to the top.  It is this stage where the concrete really starts to take on a new personality, like an awkward teenager emerging from acne-filled puberty.

Another 30-45 minutes go by, and the concrete really starts to harden, but when you run a float over the top you can still get a tiny layer of cream to appear.  You continue working this cream back and forth over the top, smoothing and smoothing, until it too begins to harden.  At this time, a strong force over a small area of concrete will create an indentation, but by kneeling on pieces of plywood, the force is applied over a larger surface area and the concrete doesn’t move.  Using these “kneeboards”, you can get over to the center of the slab and work that as well.

Raphael working the bull float

I must admit that I had another learning experience during this pour as well.  Although I was certain I ordered the same amount of extra concrete as the last pour, in which we had quite a bit leftover at the end, we ended up running out of concrete with a tiny corner of the slab left.  I made a quick trip to the hardware store and we dropped 13 bags of concrete in, mixed it with water, and finished the job.  When it was all said and done, you can’t tell the difference, and hopefully there will be no negative side effects down the road.

After the concrete hardened, I went out and sprayed it down with a fine mist every 15 minutes or so.  While excess water added to the concrete before it has set will reduce the strength, when it is added after setting it slows the curing process and will prevent the cracking that can occur when the concrete sets too quickly.

Step 7b- Add Gravel, Vapor Barrier, and Rebar

Capillary forces are very powerful.  Have you ever been to a redwood forest and wondered how water gets from the roots to the leaves at the very top of the tree?  The answer is capillary force, and surprisingly, it works even more efficiently in concrete than it does in trees!  Scientists believe concrete has such powerful capillary force that it theoretically has the ability to drive water 6 miles upward against the force of gravity.  Wood maxes out at about 400 feet which is why you don’t see any trees get that high.  In an effort to curb these powerful forces, building codes require that a layer of gravel and a vapor barrier be placed underneath the concrete slab.  The gravel drains away any standing water, and the vapor barrier takes care of any water vapor. 

As you can see above, I have started adding the gravel layer inside my footing.  The long 2×12 boards act as barriers to prevent the gravel from occupying the “shovel footing” that is necessary to support the bearing wall that will soon be framed directly above it.  Once all the gravel has been added and compacted, the boards will be removed and a 12″ wide and 8″ deep ditch will be left behind.  It is much easier to create the ditch this way rather than shovel the gravel out.  When we pour the concrete for the slab, the concrete will flow into this ditch and the slab will be 8″ thicker along that line, giving added support to the bearing wall.  If you aren’t aware, a bearing wall means that it is supporting some of the weight of the house.  The entire roof of the house is supported on only two exterior walls, so none of the interior second story walls have any weight to carry. I could have supported the weight of the floor joists between the first and second stories in the same way, but I would have had to use special engineered I-Joists.  Instead, it was much easier to use two lengths of 2×12 joists and have them meet on top of one of the first story interior walls.  This wall is the bearing wall.

After all of the gravel had been added, I leveled it out and then installed the horizontal layer of Roxul as you can see above.  Keep in mind that the more insulation added now, the lower the heating bill will be in the future.  Investing an extra $300 now will quickly pay off in a year or two, and then I will reap the benefits every year after that for the life of the house.  Once the insulation was added, I ran a plate compactor around everywhere to ensure the gravel was well compacted.  Then I pulled out the long 2x12s to create the shovel footing as you can see below.

The last steps were to add the vapor barrier and rebar.  The vapor barrier comes in a large roll so it was simply a matter of rolling it out and cutting it to fit.  Wherever a pipe penetrated I used vapor barrier tape to seal the hole.  I tucked all the edges of the barrier in between the two layers of insulation.  The rebar I lined up in a neat, four foot grid and set it on 2″ chairs so it would end up right in the middle of the 4″ slab.

 

Step 7a – Pull Stakes and Forms, Insulate, and Reinspect

After a couple weeks of frustration, I was rewarded with my second passing inspection today, giving me a green light to pour the concrete slab that will complete the foundation.  I do have a few more steps to take before then, which I will document in the next post, but the inspector is allowing me to just take a picture after the gravel is filled in so he doesn’t have to come back.  Weather is threatening not to cooperate but with a little luck I will have the slab poured before the end of the week.  It is hard to believe that when I get my next inspection, the house will be completely framed!  You can see to the left how the permit is kind of like a checklist that the inspector signs off as you move through the building process.  The two blank spots are not applicable to my build and I will actually be skipping over the rough plumbing, duct, and HVAC so the next inspection will be the ‘rough frame-roof’.  After that it will be nice and dry inside and I can work on finishing the plumbing & HVAC.

The frustrations I experienced over the last two weeks resulted from the same mistake that caused the two mishaps with the first concrete pour: underestimating the fantastic power of concrete.  I should have removed the stakes and forms as soon as 24 hours had passed from pouring the footings, but I was nervous and decided to wait an extra day.  When I finally got the nerve to pull the stakes they didn’t budge a millimeter.  I had purchased a fancy stake puller called a JackJaw that my mentor had used to remove his stakes,  but I had decided to go for the $225 unit instead of the $450 one.  The result was the rapid destruction of the tool as you can see below.

The bottom is NOT supposed to bend that way!

Thankfully, JackJaw has outstanding customer service and they offered to accept the unit back as a full price credit towards the more expensive one.  After a week of waiting, it finally arrived and though it was many times more powerful, it was still a battle to get the stakes out as they had now been setting in the concrete for over a week.  Using the customer service associate’s advice, I used a sledge to pound each stake in a few inches and then used the JackJaw to pull it up until it wouldn’t go out anymore, and then repeat the process.  It was an agonizingly slow process, and I still have 4 stakes in the ground as I’m typing this, but that’s about 92 stakes less than I had in the ground a week ago.

With the stakes out, you might think it would be quite easy to pull off the form boards.  The smooth plywood forms were still greasy from the last time they were used so they didn’t adhere to the concrete, and all the screws and stakes holding them together had been removed.  Unfortunately, because of the way the concrete had curled up and around the bottom of the form as I described in my previous post, removing them was just as excruciatingly time-consuming as pulling out the stakes.  Like running a marathon, it didn’t seem like a lot of fun while I was in the middle of it, but looking back on it the experience was much more rewarding this way and I surely have some additional muscle tone to show for it.

With the forms removed, I was able to apply the Roxul to the interior vertical face of the footing as you can see in the picture that started this post.  Many people find it puzzling that there is a layer of foam sandwiched inside two pours of concrete, but the layer of insulation will serve two important purposes.  It will protect the slab from frost heave during the winter, and work in unison with the walls and roof to reduce the heating and cooling load required to maintain a comfortable temperature in the house all year long.  Cold-weather climate builders have used foam called EPS (expanded polystyrene) that is commonly found in packaging for a new television or computer underneath or surrounding slabs for many years.  Not only is the manufacturing of the foam harmful to the environment, but the insulating power (r-value) slowly degrades over time.  With Roxul, a brand of rockwool, you don’t have either of these downsides.  It really is an incredible product as you can soak it down with a hose all you want, peel back the outer layer, and the inside will be bone dry.  As you can see to the left, I cut a 45 degree slope on the top of the Roxul.  This will allow for maximum insulation while also giving the slab a firm connection to the footing.

The last step was simple.  I just capped off the entire DWV system (Drain, Waste, Vent) and filled it with water.  As you can see, I added a 10′ section of ABS to one of the vents so I could show the required “10 foot head of pressure” for the inspector.  The force of gravity on the column of water held in that pipe applies a force to the entire system that the building code has approved to show that there are no leaks in the system.  It hasn’t happened a lot, but this was one of those rare times when I didn’t have to spend any extra time fixing a mistake I had made.  As you can see below, an empty and uncapped, upside down water bottle shows the water level holding steady, showing that there are no leaks.